Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

Class Test - I	Session: Jan - Jun, 2022,	Month - June
Semester - 4		
th	Subject - SA-I	Code - B020411(020)
Time Allowed: 2 hrs	Max Marks: 40	

Note: - Solve any two Questions from Part I. From part II, Question (A) is compulsory and solve any two questions from (B), (C) and (D)

Part-I
I. Differentiate between static and kinematic indeterminacy.
II. Discuss Tension Coefficient.
III. Determine the degree of static indeterminacy of the following structures and comment on stability of the structure:
(A)

[10]
Apply
COI

Using the method of tension coefficient analyse the plane truss shown in figure. Find the member forces.
(B)
(C)
[10] Analyse COI

A space frame shown in Fig. is supported at A, B, C and D in a horizontal plane through ball joints. The member EF is horizontal and is at a height of 3 m above the base. The loads at the joints E and F, shown in the figure act in a horizontal plane. Find the forces in all the members of the frame

Part- II
I. Discuss the Relation between Loading, SF, BM, Slope and
(A)
II. Discuss elastic curve; draw an elastic curve for a simply supported beam with UDL.
A beam AB of 5 meters span is simply supported at the end and is loaded as shown in figure. Using Macaulay's method determine:
(I) Deflection at C
(II) Slope at A and B
(B)

Determine the slope at A and B and the deflection at C and D in the beam shown in figure. EI = constant (Use Macaulay's Method)
(C)

107] Evaluate
C()2

A 3 meters long cantilever carries a uniformly distributed load over the entire length. By using double integration method calculate the slope and deflection at free end.
(D)

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

Semester - $4^{\text {th }} \quad$ Subject - SA-I \quad Code-B020411(020)
Time Allowed: 2 hrs
Max Marks: 40
Note: - Solve any two Questions from Part I. From part II, Question (A) is compulsory and solve any two questions from (B), (C) and (D)

Part-I

I. Differentiate between static and kinematic indeterminacy.
II. Discuss Tension Coefficient.
III. Determine the degree of static indeterminacy of the following structures and comment on stability of the structure:
(A)

Using the method of tension coefficient analyse the plane truss shown in figure. Find the member forces.
(B)

[10] Analyse
COI

A space frame shown in Fig. is supported at A, B, C and D in a horizontal plane through ball joints. The member EF is horizontal and is at a height of 3 m above the base. The loads at the joints E and F, shown in the figure act in a horizontal plane. Find the forces in all the members of the frame.
(C)

I. Discuss the Relation between Loading, SF, BM, Slope and Deflection.
(A)
II. Discuss elastic curve; draw an elastic curve for a simply supported beam with UDL.
A beam AB of 5 .meters span is simply supported at the end and is loaded as shown in figure. Using Macaulay's method determine:
(I) Deflection at C
(II) Slope at A and B
(B)

Determine the slope at A and B and the deflection at C and D in the beam shown in figure. EI = constant (Use Macaulay's Method)
(C)

A 3 meters long cantilever carries a uniformly distributed load over the entire length. By using double integration method calculate the. slope and deflection at free end.
(D)

Shri Shankaracharya Institute of Professional Management \& Technology Department of Civil Engineering

SSIPMT

Class Test - I Session: Jan-June 2022 Month - June
Semester - 4th Subject - Engineering Geology
Code - B020415(020)

Time Allowed: 2 hrs .
Note: - In Part I \& II, Question A is compulsory and attempt any two from B, C \& D.

Marks Levels of
Bloom's
taxonomy
cos

Part I

What is Engineering Geology? Enumerate the various
A. hypothesises of the origin of the earth.
B. Describe the radioactive method for dating the earth. How old is the most reliable method of dating?
Give a brief account of the internal structure of the earth. What
C. are the major characteristics of each region?
D. Define minerals? Describe various physical properties used for the identification of minerals.

Part II

What is metamorphism? Define metamorphic rock and give two
A. examples of such rock.
B. What is mineralogy? Describe the various chemical and optical properties of minerals.
Define Ore? Explain the various properties of the following
C. minerals,

Silica, Feldspar, Garnet, Graphite and Hematite.
Define Rocks? Explain igneous and sedimentary rocks in the following manner; their definition, mode of occurrence,
D. structure, texture, and classification.
[4] Remember
[8] Understand

CO1
[8] Understand
[8] Remember
Understand
[4] Remember
CO3

Remember, Understand Remember,
[8] Understand CO 2

Apply

Remember,
[8]
Understand

Part-1

A. Define Uniform flow and non-uniform flow.
B.

Define Specific energy. Draw specific energy curve and derive expression for critical depth and critical velocity.

Explain the term hydräulic jump. Derive an expression for the depth of C. hydraulic jump.

Part- II

A. Write the dimension of the following term

Viscosity, Power, Density and Discharge
Derive an expression for the variation of depth along the length of the bed of the channel for gradually varied flow in an open channel. State clearly all the assumption made.
(i) The discharge of water through a rectangular channel of width 8 m , is $15 \mathrm{~m}^{3} / \mathrm{s}$ when depth of flow of water is 1.2 m . Calculate Specific energy, Critical depth, critical velocity and Minimum specific energy.
C.
(ii) Find an expression for the drag force on smooth sphere of diameter D, moving with uniform velocity V in a fluid of density ρ and dynamic viscosity μ.
[4] Understand
[16] Understand
3
[16] Understand 3
[4] Understand
[16] Understand
3

Understand
,Analyze
3 and 4

Class Test - I Session: Jan - July, 2022

Subject - Building Construction, Code - B020414(020)
Max Marks: 40
Note: - Part (a) is compulsory of each unit and carries 4 marks. Attempt any 2 questions from b, c \& d that carries 8 marks each.

Unit- I
(a) Describe the function of foundation.
(b) Explain with the help of sketches various types of shallow foundation.
(c) What do mean by well foundation. Elaborate with all component and with
(d) What are the causes of foundation failure and their rectification?

Unit- II

(a) What do you understand by masonry? Write down the different types of
(b) Explain the various types of stone masonry with neat sketch.
(c) Explain the following: (any three)
a) Course
b) Header
[8] Understand CO_{2}
c) Stretcher
d) Quoins
(d) Sketch and explain the various forms of bond pattern.
[4] Remember CO2
[8] Understand CO2
[8] Understand CO 2

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

Class Test - I Session: Jan - July 2022, Month -June

Semester $-4^{\text {th }}$, Subject - Surveying and Geomatics Surveying, Code - B020413(020)

Time Allowed: 2 hrs Max Marks: 40
Note:- Question A is compulsory. Answer any two questions from B. C \& D.

Part- I

A
Write short note on Subtense Theodolite.
A tacheometer was set up at a station C and the following readings were obtained on a staff vertically held.

Instrument station	Staff station	Vertical angle	Hair readings(m)			Remarks
C	BM	$-5^{\circ} 20^{\prime}$	1.5	1.8	2.45	RL of
C	D	$+8^{\circ} 12^{\prime}$	0.75	1.5	2.25	$\mathrm{BM}=750.50 \mathrm{~m}$

€alculate the horizontal distance CD and RL of D, when the constants of instruments are 100 and 0.15 .
Derive the expression for horizontal and vertical distance and the reduced level of the staff station in the tangential method when-

- Both angles are angles of elevation.

8 Apply
CO 3

- Both angles are angles of depression.
- One is of elevation and other is of depression.

D Two points A and B are opposite sides of a summit. The tacheometer was set up at P on the top of the summit. and the following readings were taken. The tacheometer is litted with an Anallatic lens. the multiplying constant being 100. The staff was held normal to the line of sight. Calculate :

1. The distance between A and B .
2. The gradient of lines $P A$ and $P B$

Instrument Station	Height of Instrument	Staff Station	Vertical Angle	Hair Readings			Remarks
P	1.5	A	$-10^{\circ} 30^{\prime}$	1.15	2.05	2.95	RL of $\mathrm{P}=450.5 \mathrm{~m}$ P

Part- II

Define the following
A

1. Independent Quantity

4 Understand
CO 3

8
Analyse
CO 3
ex

8 Analyse Co3

8
CO3

8 Analyse
CO 3
2. Conditioned Quantity
3. Residual Error
4. Most Probable Value

The following angles were measured at a station O so as to close the horizon :

$\angle \mathrm{AOB}=84^{\circ} 42^{\prime} 28^{\prime} .75$	weight -3
$<\mathrm{BOC}=101^{\circ} 15^{\prime} 43^{\prime} .26$	weight -2
$<\mathrm{COD}=95^{\circ} 38^{\prime} 27^{\prime} .22$	weight -4
$<\mathrm{DOA}=78^{\circ} 23^{\circ} 23^{\prime \prime} .77$	weight -2

Analyse
CO 2

8 Analyse
CO_{2}

Assign weights to the angles by Gauss rule and determine their least squares estimate.

$14106 / 22$

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Civil Engineering

SSIPMT

RAIPUR

Class Test - I Session: Jan - July 2022, Month -June
Semester $-4^{\text {th }}$, Subject -Surveying and Geomatics Surveying, Code - B020413(020)
Time Allowed: 2 hrs Max Marks: 40
Note:- Question A is compulsory. Answer any two questions from B, C \& D.

Part- I

A Write short note on Subtense Theodolite.
A tacheometer was set up at a station C and the following readings were obtained on a staff vertically held.

B

Instrument station	Staff station	Vertical angle	Hair readings(m)			Remarks
C	BM	$-5^{\circ} 20^{\prime}$	1.5	1.8	2.45	RL of CM
C	D	$+8^{\circ} 12^{\prime}$	0.75	1.5	2.25	BM $=750.50 \mathrm{~m}$

Calculate the horizontal distance CD and RL of D, when the constants of instruments are 100 and 0.15 .
Derive the expression for horizontal and vertical distance and the reduced level of the staff station in the tangential method when-

C

- Both angles are angles of elevation.
- Both angles are angles of depression.
- One is of elevation and other is of depression.

D Two points A and B are opposite sides of a summit. The tacheometer was set up at P on the top of the summit. and the following readings were taken. The tacheometer is fitted with an Anallatic lens, the multiplying constant being 100. The staff was held normal to the line of sight. Calculate :

1. The distance between A and B .
2. The gradient of lines PA and PB

Instrument Station	Height of Instrument	Staff Station	Vertical Angle	Hair Readings			Remarks
P	1.5	A	$-10^{\circ} 30^{\prime}$	1.15	2.05	2.95	RL of $\mathrm{P}=450.5 \mathrm{~m}$ P

Define the following
A

1. Independent Quantity

Part- II

2. Conditioned Quantity

3. Residual Error

4. Most Probable Value

The following angles were measured at a station O so as to close the horizon :
$\angle \mathrm{AOB}=84^{\circ} 42^{\prime} 28^{\prime \prime} .75$ weight -3
$\angle B O C=101^{\circ} 15^{\prime} 43^{\prime \prime} .26$ weight - 2

B
$<\mathrm{COD}=95^{\circ} 38^{\prime} 27^{\circ} .22$ weight -4
$<\mathrm{DOA}=78^{\circ} 23^{\prime} 23^{\prime \prime} .77$ weight -2
Analyse
CO2

Analyse
CO 2

Determine the most probable value of each angle by using method of differences.
D The angles A, B \& C of a triangle $A B C$ have been observed several times with the following results:

A	B	C
$56^{\circ} 12^{\prime} 36^{\prime \prime}$	$68^{\circ} 36^{\prime} 12^{\prime \prime}$	$55^{\circ} 11^{\prime} 14^{\prime \prime}$
$56^{\circ} 12^{\prime} 32^{\prime \prime}$	$68^{\circ} 36^{\prime} 14^{\prime \prime}$	$55^{\circ} 11^{\prime} 18^{\prime \prime}$
$56^{\circ} 12^{\prime} 34^{\prime \prime}$	$68^{\circ} 36^{\prime} 16^{\prime \prime}$	$55^{\circ} 11^{\prime} 12^{\prime \prime}$
$56^{\circ} 12^{\prime} 32^{\prime \prime}$	$68^{\circ} 36^{\prime} 14^{\prime \prime}$	$55^{\circ} 11^{\prime} 15^{\prime \prime}$
$56^{\circ} 12^{\prime} 38^{\prime \prime}$	$68^{\circ} 36^{\circ} 16^{\prime \prime}$	$55^{\circ} 11^{\prime} 16^{\prime \prime}$
$56^{\circ} 12^{\prime} 35^{\prime \prime}$	$68^{\circ} 36^{\prime} 18^{\prime \prime}$	
	$68^{\circ} 36^{\prime} 12^{\prime \prime}$	
	$68^{\circ} 36^{\prime} 14^{\prime \prime}$	

8 Analyse
CO 2

Assign weights to the angles by Gauss rule and determine their least squares estimate.

